
Compact, searchable-by-LIKE hierarchical trees in RDBMS tables – Cesare Brizio, 1995

Page 1 of 15

Note: even though the examples provided are based on Oracle, they should also apply to

any RDBMS supporting literal, case-sensitive primary keys. Access, to say one,
accepts literal primary keys but it’s case-insensitive (in any given table, the

primary key “AaA” violates uniqueness if primary key “aAa” exists)

Note: the examples illustrated here apply to hierarchies made of a fixed number of
named ranks, but the underlying reasoning applies equally well to contexts where
the number of hierarchical levels (=ranks) isn’t initially known.

Compact, searchable-by-LIKE hierarchical trees in RDBMS tables

Compact, searchable-by-LIKE hierarchical trees in RDBMS tables 1

Hierarchies ... 2

Built-in RDBMS-level hierarchical query management .. 3

An alternative approach ... 4

Key-generating function ... 6

Building the tree ... 11

Decoding the tree ... 13

Compact, searchable-by-LIKE hierarchical trees in RDBMS tables – Cesare Brizio, 1995

Page 2 of 15

Hierarchies

Relational databases including hierarchical data, e.g. biological taxonomies (Domain-
Kingdom-Type-Class-Order…) or administrative geographical information (Continent-

Nation-Region-Province…) pose very specific problems when managing queries such as
(descriptive metalanguage syntax is used):

 Select all the rows from the “Photographs” Table pertaining to butterflies in the

family Lycaenidae from Emilia Romagna
 Select all the rows from the “Photographs” Table pertaining to Mammals
 Select all the rows from the “Photographs” Table pertaining to Europe

When designing the database, it would be very unreasonable (as it would violate the 3rd

Normal Forms, “nothing but the key”) to include in the “Photographs” Table as many
columns as the elements of the geographical and of the taxonomical hierarchy.
The correct solution is including just two foreign keys that represent the lowest-ranked

(e.g. geographical Locality, Species or Subspecies) entity to which the table row refers.

A similar need for normalization is present for the parent tables that we may call
“Taxonomy” and “Geonomy”: the hierarchical cascades from continent to locality and from
domain to subspecies cannot reasonably engage as many columns as the ranks.

Geonomy Table

GEO_PK Continent Nation Region Province Town District Locality

1 Europe

2 Europe Italy

3 Europe Italy Emilia Romagna

...

99 Europe Italy Emilia Romagna Ferrara Poggio Renatico Chiesa Vecchia Via Chiesa Vecchia, 45

Although 3NF compliant, a cascade of foreign-key-referenced tables, one table per rank,
would also have some drawbacks, in particular lengthy, join-intensive, prolix queries.

Furthermore, the introduction of new intermediate ranks would require a redesign of the
cascade, and it would be impossible to skip one or more attribution levels, e.g. assign a

Locality to a Town that has no Districts.

The proper solution requires to include in the parent table a “BELONGS_IN” column as a

foreign key referencing the very same table. Rank names, that are not the main subject
here but that in fact may improve clarity of query results, can be placed in their own

special table.

Locality Table

LOC_PK Locality DIST_FK

1 Via Chiesa Vecchia, 45 1

...

Districts Table

DIST_PK District TOWN_FK

1 Italy 1

...

Provinces Table

PRO_PK Province REG_FK

1 Ferrara 1

...

Continents Table

CONT_PK Continent

1 Europe

... ...

Towns Table

TOWN_PK Town PRO_FK

1
Poggio

Renatico
1

...

Regions Table

REG_PK Region NAT_FK

1
Emilia

Romagna
1

...

Nations Table

NAT_PK Nation CONT_FK

1 Italy 1

...

Compact, searchable-by-LIKE hierarchical trees in RDBMS tables – Cesare Brizio, 1995

Page 3 of 15

Geonomy Table

GEO_PK Name BELONGS_IN GEO_RANK_FK

1 Europe 10

2 Italy 1 20

3 Emilia Romagna 2 30

4 Ferrara 3 40

5 Poggio Renatico 4 50

6 Chiesa Vecchia 5 60

...

99
Via Chiesa
Vecchia, 45

6 70

The well-designed, self-referenced parent tables are compact and comply with 3NF, which
is very desirable, but lack a feature that would be granted by the unadvisable design that

includes one column for each possible rank: in the latter case, i could well

SELECT * FROM GEONOMY WHERE PROVINCE = 'Ferrara'

and immediately get a list including the Province of Ferrara and all the towns, districts and

localities belonging in the province. Instead, the correctly designed Geonomy table
requires some computation to obtain the full content of the hierarchical tree branch

rooted in the Province of Ferrara.

Built-in RDBMS-level hierarchical query management

To that purpose, Oracle supports hierarchical queries1 thanks to the CONNECT BY
condition complemented by features that include the PRIOR operator, by the LEVEL

pseudo-column and by the SYS_CONNECT_BY_PATH() function as in the following
example:

SELECT GEO_PK, NAME, GEO_RANK_FK, BELONGS_IN, LEVEL,

 SYS_CONNECT_BY_PATH(NAME, '/') AS GEO_HIERARCHY

FROM GEONOMY

WHERE NAME = 'Ferrara'

CONNECT BY PRIOR GEO_PK = BELONGS_IN

ORDER BY LEVEL;

Such a query returns results similar to the following:

GEO_PK Name GEO_RANK_FK BELONGS_IN LEVEL HIERARCHY

4 Ferrara 40 3 1 /Ferrara

4 Ferrara 40 3 2 /Emilia Romagna/Ferrara

4 Ferrara 40 3 3 /Italy/Emilia Romagna/Ferrara

4 Ferrara 40 3 4 /Europe/Italy/Emilia Romagna/Ferrara

The way the RDBMS manages hierarchical queries is complex and may be
counterintuitive: one would expect that the example query above would return one row,

when in fact it returns four, unless other WHERE conditions are set.
The SYS_CONNECT_BY_PATH() is usually invoked with a text column as an argument,

because the resulting hierarchical trees are human-readable – but we could also specify a
primary key column and obtain a series of GEO_PK rather than a series of NAME.
In any case it should be reminded that, despite its promising potential, unfortunately the

SYS_CONNECT_BY_PATH() function can only be called in the SELECT list and in the
ORDER BY clause, but not in the WHERE clause.

Summarizing, it’s surely possible to create a hierarchical tree “on the fly”, but to use it in
a WHERE clause one should create a view as in the following example:

1 For a more exhaustive coverage of hierarchical queries in Oracle, refer to

https://docs.oracle.com/cd/B12037_01/server.101/b10759/queries003.htm#i2060615

Geo_Ranks Table
GEO_RANK_PK Name

10 Continent

20 Nation

30 Region

40 Province

50 Town

60 District

70 Locality

https://docs.oracle.com/cd/B12037_01/server.101/b10759/queries003.htm#i2060615

Compact, searchable-by-LIKE hierarchical trees in RDBMS tables – Cesare Brizio, 1995

Page 4 of 15

CREATE VIEW GEO_TREE_VIEW AS

 SELECT GEO_PK, NAME, GEO_RANK_FK, BELONGS_IN, LEVEL,

 SYS_CONNECT_BY_PATH(NAME, '/') AS GEO_HIERARCHY

 FROM GEONOMY

 WHERE connect_by_isleaf=1

 START WITH GEONOMY.GEO_PK = 1

 CONNECT BY PRIOR GEO_PK = BELONGS_IN;

As long as we are just interested in the full path to each leaf level, our where clause is

implemented with one additional condition,

connect_by_isleaf=1

But, if we use it, our results will include only leaf nodes (and, as long as in the example
Ferrara is the name of a province that has descendants, it would not be included: if

present, the Town of Ferrara may be included only as long as it has no descendants...).

Now that it’s available as a column in a view, the hierarchical tree can be queried, and in
fact:

SELECT *

FROM GEO_TREE_VIEW

WHERE GEO_HIERARCHY LIKE '%Ferrara%'

 AND GEO_RANK_FK > 40;

would return a list of all the “leaves” (=having no descendants) administrative

subdivisions under the provincial rank, contained in the Province of Ferrara.
Such a list may, or may not, satisfy our needs. Furthermore, especially for big tables, the
on-the-fly creation of hierarchical trees (or, to the same purpose, the refresh of views

that contain hierarchical trees) may be computationally intensive an consequently slow.

An alternative approach

The alternative approach illustrated here is not particularly brilliant, nor puts into play any

sophisticated method, but may help to manage RDBMS hierarchies. Most probably, I’m
not the first to conceive this idea, that came to my mind around 1995. For sure, at the
time I could not find any better alternative than developing the concept from scratch.

The approach described herein was applied to entirely different RDBMS:
 End-user X-Base databases managed via Visual Dbase applications

 Proper Enterprise RDBMS: Oracle 5 to Oracle 11
As explained in the initial notes, effectiveness requirements include the possibility for the
RDBMS to create literal, case sensitive primary keys. The possibility to use a case-

sensitive LIKE condition in the queries is also taken for granted.

It’s absolutely clear that this method contradicts the 3rd Normal Form by implementing
one or more child tables with data that – at the price of slower and much more

complicated queries – could be accessed also in their original parent tables, but this is an
exemplar case where “denormalize until it works”, the second part of the old adage2, is

under the spotlight. We are exactly aiming at quicker, clearer and more effective queries
for the hierarchical contexts.

The method can be described as follows:

 the columns of the hierarchical tables must include at least a primary key, a
name/description of each entity, the “belongs in” column with the primary key of
their “ancestor”, a column for the compact hierarchical tree. The RANK column is

desirable for filtering the query results further. Usually, there is only one “universal
ancestor” at the top rank, representing the root of all the hierarchy;

2 The full version is “Normalize until it hurts, denormalize until it works”

Compact, searchable-by-LIKE hierarchical trees in RDBMS tables – Cesare Brizio, 1995

Page 5 of 15

 provisions are made to generate literal, text-searchable (LIKE condition), primary

keys made by a fixed number of characters - in our example, 3 (three)
alphanumeric characters;

 any child table including a foreign key to a hierarchical table (including the
hierarchical table itself3), also includes a column for the compact hierarchical tree;

 provisions are made to generate text-searchable (LIKE condition), compact
hierarchical trees, that are created for each new record in the hierarchical table and
saved in the new record;

 for systems (such as those considered in our example) whose hierarchies are based
on a preset and fixed number of levels (ranks), the maximum length of a

hierarchical tree is known in advance, and the column can be dimensioned
consequently. Otherwise, it’s wise to reserve an adequate space for a tree whose
length will grow as soon as new hierarchical levels are added;

 considering its modest impact on table size and performance, the hierarchical trees
(geographical, taxonomical...) are also added as columns in the non-hierarchical

child tables that reference the hierarchical tables: that way, the full trees can be
successfully explored by querying just one non-hierarchical table.

Back to our initial problem that was exemplified as:

«Select all the rows from the “Photographs” Table

pertaining to butterflies in the family Lycaenidae from Emilia Romagna»

executing such a query boils down to:
 obtain the primary key of the Lycaenidae family, e.g. A02, from the “Taxonomy”

table
 obtain the primary key of Italy, e.g. 2cG, from the “Geonomy” table

 then,

SELECT * FROM PHOTOGRAPS WHERE TREE_TAX LIKE '%A02%' and TREE_LOC like '%2cG%'

The relevant values may also be obtained with subqueries, by prompting the user for the
taxon and for the locality name. Here follows an example query from a real-world Oracle

installation, that demonstrates the efficacy of the method for our desired purpose.

SELECT

 anagcoll.codice, anagcoll.destax,

 anagcoll.note, anagcoll.detsic,

 anagcoll.ultimamod, stato.dessta,

 riferim.desrif, localita.desloc,

 localita.intoloc, taxonomy.nometax

FROM anagcoll

 LEFT JOIN taxonomy ON anagcoll.codtax = taxonomy.codetax

 LEFT JOIN riferim ON anagcoll.codrif = riferim.codrif

 LEFT JOIN stato ON anagcoll.codsta = stato.codsta

 LEFT JOIN localita ON anagcoll.codloc = localita.codloc

WHERE

 anagcoll.treeloc LIKE (Select chr(37)||codloc||chr(37) from localita where

desloc='&LOCALITY_UPPERCASE') AND

 anagcoll.treetax LIKE (Select chr(37)||codetax||chr(37) from taxonomy where

nometax='&TAXON_UPPERCASE')

ORDER BY localita.desloc;

Query results, as expected, include:

3 As explained above, the column BELONGS_IN references the primary key of another row in the

hierarchical table

Compact, searchable-by-LIKE hierarchical trees in RDBMS tables – Cesare Brizio, 1995

Page 6 of 15

Random example values of TREETAX (taxonomical tree) and TREELOC (geographical tree)
are as follows:

TREETAX TREELOC

000 00m 01w 03g 04B 04G 06e 06i 001 044 065 066

000 00m 01w 03g 04B 04G 06e 06i 001 044 065 066

000 00m 01w 03g 04B 04L 09i 09k 0At 0Bt 0CD 01R 02E 05O 05M 05R 05p 04y

000 00m 01w 03g 04B 04L 09i 09k 0Aq 0Db 0Dk 01R 02E 05O 05M 05R 05p 04y

000 00m 01w 03g 04B 04L 09i 09k 0Am 01R 02E 05O 05M 05R 05p 04y

000 00m 01w 03g 04B 04L 09i 09k 0D0 0D1 0D2 01R 02E 05O 05M 05R 05p 04y

000 00m 01w 03g 04B 04L 09i 09k 0At 0E4 0Ty 01R 02E 05O 05M 05R 05p 04y

000 00m 01w 03g 04B 04L 09i 09k 0Ae 0DL 0DN 01R 02E 05O 05M 05R 053

000 00m 01w 03g 04B 04L 09i 09k 0At 0By 0E3 01R 02E 05O 05M 05R 053

After demonstrating that, thanks to the compact hierarchical trees, a query against a
single table can return rows filtered by any hierarchical parent, including the rows

referencing all its descendants, in the following pages I’ll illustrate the simple steps
needed to achieve that result.

Key-generating function

You can observe that in the compact tree every triplet of characters is separated from the
adjacent ones by the blank character, that for obvious reasons is excluded from primary
key generation. This grants independent findability of each primary key in each tree when

searched by the LIKE clause with the generic pattern matching operator %. As stated
above, the tree is generated whenever a new row is added to a hierarchical table, and

copied in the child table as soon as a new row is added and a foreign key value is
instantiated.

To grant a successful search by LIKE, specific characters (including the pattern matching

ones) must not enter a primary key. This is one of the reasons why the generation of a
new primary key in a hierarchical table is performed by a specific table-based function4.
Surely, the same result could have been granted by the usual triggers and sequences, but

in this case the function seems capable to grant more flexibility and can be invoked
programmatically.

A generic example is provided in the following page. For each hierarchical table, as many

tables as the number of characters in the key contain the last values (decimal ASCII table
indexes) used for the creation of each byte in the key.

4 The tactics adopted to exclude the undesirable ASCII codes from the key generation process are

simple and may also be applied when using sequences. A function is exemplified more under.

Compact, searchable-by-LIKE hierarchical trees in RDBMS tables – Cesare Brizio, 1995

Page 7 of 15

-- create the three tables (for three-character keys)

CREATE TABLE FIRST_A (NUM INTEGER);

CREATE TABLE FIRST_B (NUM INTEGER);

CREATE TABLE FIRST_C (NUM INTEGER);

-- initialize the three tables (for three-character keys)

insert into FIRST_A values(48);

insert into FIRST_B values(48);

insert into FIRST_C values(47);

create or replace function NEW_KEY return CHAR IS NEW_TRIO char(3);

/**

NAME: NEW_KEY

REVISIONS:

Version Date Author Description

--------- ---------- --------------- ------------------------------------

0.1 Late 1990's Cesare Brizio 0. Conceived and used in Visual Dbase

1.0 17/03/2005 Cesare Brizio 1. Created

2.0 21/01/2023 Cesare Brizio 2. Added new parameters

PARAMETERS

INPUT: NONE

Returns: A primary key composed by three ASCII characters based on three TABLES,

 FIRST_A, FIRST_B and FIRST_C.

DESCRIPTION

Other versions of the same function use SEQUENCES to the same purpose.

The initial version reproduced here allows an higher degree of control

on the process of skipping specific ASCII characters.

Every character in the key cycles in a sequence that includes:

 - the digits 0-9

 - the 26 alphabetical uppercase characters

 - the 26 alphabetical lowercase characters

All control characters or ambiguous characters are excluded from key generation.

This system can generate up to 62 x 62 x 62 = 238.328 different keys

Here follow some examples of the keys generated in consecutive calls up to

the final acceptable combination:

 000

 001

 002

 003

 009

 00A

 00B

Compact, searchable-by-LIKE hierarchical trees in RDBMS tables – Cesare Brizio, 1995

Page 8 of 15

 zzx

 zzy

 zzw

 zzz

**/

 */

 CHAR_1 char(1);

 CHAR_2 char(1);

 CHAR_3 char(1);

 CHANGE_CHAR_2 char(1);

 CHANGE_CHAR_1 char(1);

 ---NEWTRIO char(3);

 VALCHAR_1 number;

 VALCHAR_2 number;

 VALCHAR_3 number;

 BEGIN

 CHANGE_CHAR_2 := 'N'; -- Unless proved otherwise, there is no need to change

 CHANGE_CHAR_1 := 'N'; -- the first nor the second character of the key

 --Let's check whether the least significant (rightmost) character

 --is at the end of its cycle.

 --In that case, I must increment the central character

 --and reset the rightmost to initial value

 select num into VALCHAR_3 from FIRST_C;

 select num into VALCHAR_2 from FIRST_B;

 if VALCHAR_3 = 122 then CHANGE_CHAR_2 := 'Y';

 --Furthermore, I check whether the middle character

 --is at the end of its cycle.

 --In that case, I must increment the leftmost character

 --and reset the center to initial value

 if VALCHAR_2 = 122 then CHANGE_CHAR_1 := 'Y';

 end if;

 end if;

 --Get the first (most significant, leftmost) element

 select num into VALCHAR_1 from FIRST_A;

 <<new3>>

 -- Increase the least significant (rightmost) element

 VALCHAR_3 := VALCHAR_3+1;

 update FIRST_C set num = VALCHAR_3;

 CHAR_3 := chr(VALCHAR_3);

Compact, searchable-by-LIKE hierarchical trees in RDBMS tables – Cesare Brizio, 1995

Page 9 of 15

 -- If CHAR_3 has an unadmissible value, I increase it again

 if (VALCHAR_3 between 58 and 64) or (VALCHAR_3 between 91 and 96) then goto new3;

 end if;

 -- IF I MUST CHANGE THE SECOND ELEMENT ...

 If CHANGE_CHAR_2 = 'Y' Then

 <<new2>>

 -- Increase the central element

 VALCHAR_2 := VALCHAR_2+1;

 update FIRST_B set num = VALCHAR_2;

 CHAR_2 := chr(VALCHAR_2);

 -- If CHAR_3 has an unadmissible value, I increase it again

 if (VALCHAR_2 between 58 and 64) or (VALCHAR_2 between 91 and 96) then goto

new2;

 else

 -- if the middle element is increased, the rightmost element starts from the

beginning

 update FIRST_C set num = 48;

 CHAR_3 := CHR(48);

 end if;

 else

 -- get the current value

 CHAR_2 := chr(VALCHAR_2);

 end if;

 -- IF THE FIRST (LEFTMOST, MOST SIGNIFICANT) ELEMENT ...

 -- DOES NOT NEED ANY CHANGE...

 -- Note: we do not address the case when, after 238000-plus cycles,

 -- the first element cannot increase anymore.

 -- There is no remedy!!!!

 -- Furthermore, such a condition can easily be verified by checking

 -- the value contained in FIRST_A before invoking this function.

 If CHANGE_CHAR_1 = 'Y' Then

 <<new1>>

 -- Increase the most significant element

 VALCHAR_1 := VALCHAR_1+1;

 update FIRST_A set num = VALCHAR_1;

 CHAR_1 := chr(VALCHAR_1);

Compact, searchable-by-LIKE hierarchical trees in RDBMS tables – Cesare Brizio, 1995

Page 10 of 15

 -- If CHAR_1 has an unadmissible value, I increase it again

 if (VALCHAR_1 between 58 and 64) or (VALCHAR_1 between 91 and 96) then goto

new1;

 else

 -- if the left element is increased, the middle element starts from the

beginning

 update FIRST_B set num = 48;

 CHAR_2 := CHR(48);

 end if;

 else

 -- Rilevo il valore corrente

 CHAR_1 := chr(VALCHAR_1);

 end if;

 NEW_TRIO := CHAR_1 || CHAR_2 || CHAR_3;

 Return NEW_TRIO;

End NEW_KEY;

Compact, searchable-by-LIKE hierarchical trees in RDBMS tables – Cesare Brizio, 1995

Page 11 of 15

The function can be easily tested, and is capable to provide the desired keys. First,

create table FIRST_TEST (key char(3));

then, repeatedly launch:

declare

x varchar2(3);

Begin

x := NEW_KEY();

insert into FIRST_TEST values (x);

end;

After a few cycles, the content of FIRST_TEST is easily checked:

select * from FIRST_TEST;

resulting in:

KEY

000

001

002

003

004

005

006

007

008

009

6 rows selected.

Building the tree

Once the machinery for key generation is in place, we need a way to encode the tree by
recursively collecting ancestors of the current (new) row being added to the hierarchical

table.
The function, available in the next page, is very compact and has many arguments,
allowing it to be used with diverse table and column names.

Compact, searchable-by-LIKE hierarchical trees in RDBMS tables – Cesare Brizio, 1995

Page 12 of 15

create or replace FUNCTION BUILDTREE (PrimKey VARCHAR2,TableName VARCHAR2, KeyColName

VARCHAR2, ParColName VARCHAR2, RankColName VARCHAR2, TopRankPK VARCHAR2)

RETURN varchar2 AS TREE VARCHAR2(999);

/**

 NAME: BUILDTREE

 REVISIONs:

 Version Date Author Description

 --------- ---------- --------------- ------------------------------------

 1.0 17/03/2005 Cesare Brizio 1. Created

 2.0 21/01/2023 Cesare Brizio 2. Modified

PARAMETERS

INPUT: the PRIMARY KEY of the entity whose hierarchical tree is needed

 the TABLE NAME of the hierarchical table

 the NAME OF THE KEY COLUMN of the hierarchical table

 the NAME OF THE PARENT (“BELONGS IN”) column of the hierarchical table

 the NAME OF THE RANK COLUMN of the hierarchical table

 the PRIMARY KEY of the entity where the hierarchical tree is rooted, or

 of the entity where we want the tree creation to stop

Returns: A string containing the compact hierarchical tree of the entity

DESCRIPTION

== IT SHOULD BE LAUNCHED IMMEDIATELY AFTER THE CREATION OF A NEW ROW IN THE

== HIERARCHICAL TABLE!!!

== INITIALLY, THE NEW ROW IS CREATED WITH AN EMPTY VALUE IN THE COLUMN OF THE

== COMPACT HIERARCHICAL TREE

== THIS FUNCTION POUPULATES THE VARIABLE CONTAINING THE TREE

== THE COLUMN OF THE NEW RECORD CONTAINING THE COMPACT HIERARCHICAL TREE

== SHOULD BE IMMEDIATELY UPDATED WITH THE RESULT OF THIS FUNCTION

There are at least two ways to decide whether the creation of the tree is complete:

- stopping as soon as the highest rank (owned by only one entity in the table,

 the universal common ancestor that marks the root of the entire tree) is reached

- stopping as soon as the primary key of the common ancestor has been added to the

 tree

For the highest flexibility (including the generation of partial trees), this

version of the function accepts a primary key that identifies the ancestor

that closes the process of tree creation.

**/

CURR_ID varchar2(3);

FETCH_ID varchar2(3);

FETCH_RANK INTEGER;

FETCH_PARENT varchar2(3);

type MYCURSOR is ref cursor;

TREE_CURSOR MYCURSOR;

MY_STATEMENT Varchar2(200) ;

BEGIN

Compact, searchable-by-LIKE hierarchical trees in RDBMS tables – Cesare Brizio, 1995

Page 13 of 15

CURR_ID := PrimKey;

TREE := PrimKey;

LOOP

MY_STATEMENT := 'SELECT '||KeyColName||','||RankColName||','||ParColName||' from

'||TableName||' WHERE '||KeyColName||' = '||CHR(39)||CURR_ID||CHR(39);

 OPEN TREE_CURSOR FOR MY_STATEMENT;

 LOOP

 FETCH TREE_CURSOR INTO FETCH_ID, FETCH_RANK, FETCH_PARENT;

 EXIT WHEN TREE_CURSOR%NOTFOUND;

 END LOOP;

 CLOSE TREE_CURSOR;

 -- See the function explanatory header. We may hardcode here the

 -- rank of the topmost hierarchical level, or cycle until TopRankPK

 -- is reached

 -- if FETCH_RANK = 1 then

 -- exit;

 if FETCH_PARENT = TopRankPK then

 TREE := FETCH_PARENT||chr(32)||TREE;

 exit;

 else

 TREE := FETCH_PARENT||chr(32)||TREE;

 CURR_ID := FETCH_PARENT;

 end if;

END LOOP;

RETURN TREE;

END BUILDTREE;

The function may be tested anytime as in the following example, based on a real

taxonomical table:

select BUILDTREE ('0um','TAXONOMY', 'CODETAX', 'INTOTAX', 'RANKTAX', '000') from dual;

The example query above returns the following compact hierarchical tree:

 000 00m 01w 03g 04B 04L 09i 09k 0Aq 0Db 0um

Decoding the tree

The last missing piece is a quick way to decode the tree to provide a concatenated string
including the name of all the taxa in the tree. This step is not needed to execute queries

such as the one on page 4, yet it may be interesting to provide a full description of the
hierarchical cascade, for clarity or completeness.

An example of a tree-decoding function is provided in the following page.

Compact, searchable-by-LIKE hierarchical trees in RDBMS tables – Cesare Brizio, 1995

Page 14 of 15

create or replace FUNCTION DECODETREE (CompTree VARCHAR2, TableName VARCHAR2, KeyColName

VARCHAR2, DesColName VARCHAR2, RankColName VARCHAR2)

RETURN varchar2 AS DECODED_TREE VARCHAR2(1000);

/**

 NAME: DECODETREE

 REVISIONS:

 Version Date Author Description

 --------- ---------- --------------- ------------------------------------

 1.0 17/03/2005 Cesare Brizio 1. Created

 2.0 21/01/2023 Cesare Brizio 2. Added new parameters

PARAMETERS

INPUT: the compact hierarchical tree to decode

 the TABLE NAME of the hierarchical table

 the NAME OF THE KEY COLUMN of the hierarchical table

 the NAME OF THE RANK COLUMN of the hierarchical table

 the NAME OF THE NAME/DESCRIPTION COLUMN of the hierarchical table

Returns: A string containing the fully decoded hierarchical tree of the entity

DESCRIPTION

This generic version accepts table and column names as parameters.

The function is hard-coded to accept 3-character long primary keys,

separated by a blank space.

The function assumes that the compact tree was built with the corresponding

"Buildtree()" function, that ensures the “3 characters - one blank” format for

all the tree entries except the last.

**/

I INTEGER;

CURR_ID varchar2(3);

SEPARATOR varchar2(3);

MYTREE varchar2(72);

FETCH_RANK INTEGER;

FETCH_DESC varchar2(30);

type MYCURSOR is ref cursor ;

DECODE_CURSOR MYCURSOR;

MY_STATEMENT Varchar2(200) ;

BEGIN

-- how many pieces does the compact tree contain?

-- by adding one character, it becomes a multiple of four characters

MYTREE := CompTree||CHR(32);

SEPARATOR := chr(32)||'|'||chr(32);

--SEPARATOR := ' : ';

LOOP

CURR_ID := substr(MYTREE,1,3);

Compact, searchable-by-LIKE hierarchical trees in RDBMS tables – Cesare Brizio, 1995

Page 15 of 15

MY_STATEMENT := 'SELECT '||DesColName||','||RankColName||' from '||TableName||' WHERE

'||KeyColName||' = '||CHR(39)||CURR_ID||CHR(39);

 OPEN DECODE_CURSOR FOR MY_STATEMENT;

 LOOP

 FETCH DECODE_CURSOR INTO FETCH_DESC, FETCH_RANK;

 EXIT WHEN DECODE_CURSOR%NOTFOUND;

 END LOOP;

 CLOSE DECODE_CURSOR;

-- Specific ranks may be formatted differently.

-- As an example, in case of a taxonomy where genera, subgenera, species

-- and subspecies have the ranks from 15 to 18, one may add the following

-- lines:

-- If FETCH_RANK = 15 then FETCH_DESC := INITCAP(FETCH_DESC);

-- end if;

-- If FETCH_RANK = 16 then FETCH_DESC := '('||INITCAP(FETCH_DESC)||')';

-- end if;

-- If FETCH_RANK in (17,18) then FETCH_DESC := lower(FETCH_DESC);

-- end if;

 DECODED_TREE := DECODED_TREE || SEPARATOR || FETCH_DESC;

 if length(MYTREE) < 5 then

 exit;

 Else

 MYTREE := substr(MYTREE,5);

 End If;

End loop;

RETURN DECODED_TREE;

END DECODETREE;

The function may be tested anytime as in the following example, based on the same
taxonomical table as the previous example:

select DECODETREE ('000 00m 01w 03g 04B 04L 09i 09k 0Aq 0Db 0um','TAXONOMY', 'CODETAX',

'NOMETAX', 'RANKTAX') from dual;

The example query above returns the following decoded tree:

| ANIMALIA | ARTHROPODA | TRACHEATA | INSECTA | PTERYGOTA | COLEOPTERIA | COLEOPTERA |

POLYPHAGA | SCARABAEIDAE | TRICHIUS | ABDOMINALIS

Cesare Brizio, January 2023

